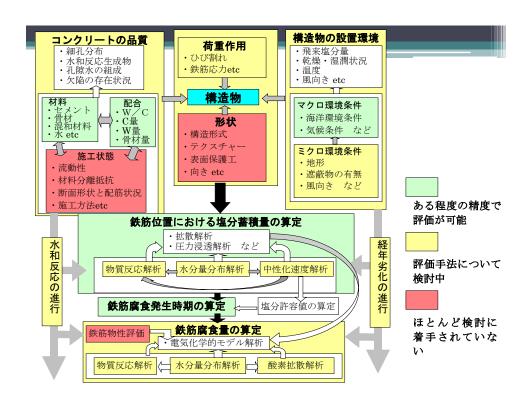
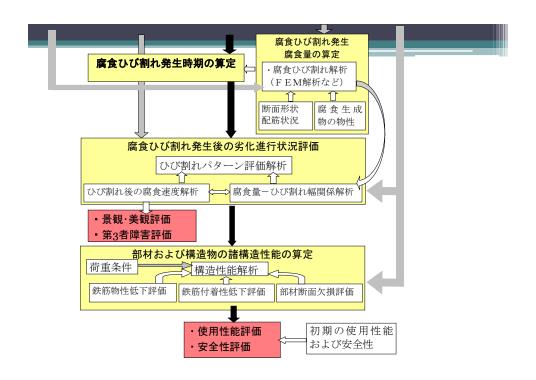
コンクリート構造物の塩害対策 における防食補強材について

鹿児島大学大学院理工学研究科 教授 武若耕司

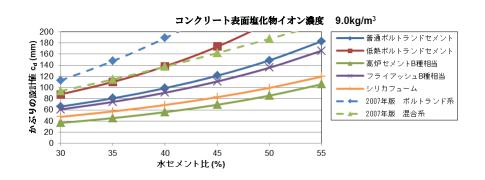
コンクリート用防食補強材の歴史


コンクリート構造物の塩害問題の歴史


海洋コンクリート構造物の劣化機構

「塩害」

かぶりの増大 コンクリート品質の改善 (コンクリート表面被覆)

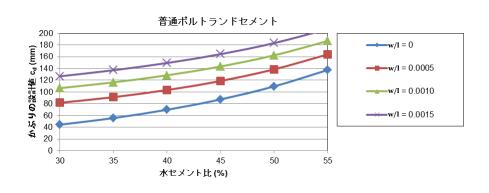


[設計編:標準] 2編 耐久性に関する照査

資料 p.87

lacksquareかぶりの設計値 c_d (ひび割れ無し)

設計耐用年数100年


2012年制定 コンクリート標準示方書 [設計編]

[設計編:標準] 2編 耐久性に関する照査

資料 p.88

$lacksymbol{\blacksquare}$ かぶりの設計値 c_d (ひび割れ有り)

設計耐用年数100年

2012年制定 コンクリート標準示方書 [設計編]

8

海洋コンクリート構造物の劣化機構

塩 害

かぶりの増大

コンクリート品質の改善 (コンクリート表面被覆)

- ✓ 構造的な制約
- ✓ 施工のばらつき etc.
- ✓ 定量的評価の難しさ

鉄筋自体の防食

電気防食法

塗装鉄筋

非腐食性補強材

- ✓ 防食性能が高い
- ✓ 利便性に優れる

我が国における防食補強材に関する検討の歴史				
年 次	制定された指針等および,その関連事項			
1977年	土木学会編:海洋コンクリート構造物設計施工指針(案) (<u>亜鉛めっき鉄筋</u> の開発と利用に言及)			
1979年	建築学会編: <mark>亜鉛めっき鉄筋</mark> を用いた鉄筋コンクリート 造の設計施工指針(案)			
1980年	土木学会編: <mark>亜鉛めっき鉄筋</mark> を用いる鉄筋コンクリート の設計施工指針(案)			
1980年	昭和55年版コンクリート標準示方書の解説書の中に、 <mark>亜</mark> <mark>鉛めっき鉄筋</mark> の指針の解説を併せて掲載			

我が国における防食補強材に関する検討の歴史

年 次	制定された指針等および,その関連事項
1983年	日本コンクリート工学協会編:海洋コンクリート構造物 の防食指針(案) (亜鉛めっき鉄筋/エポキシ樹脂塗装鉄筋の有効利用)
1986年	土木学会編: <mark>エポキシ樹脂塗装鉄筋</mark> を用いる鉄筋コンク リートの設計施工指針(案)
1986年	土木学会編:昭和61年版コンクリート標準示方書(以下, 示方書) 【施工編]に, エポキシ樹脂塗装鉄筋の使用が 明記.
1991年	日本コンクリート工学協会編:海洋コンクリート構造物の防食指針(案)「改訂」 (亜鉛めっき鉄筋を削除し、エポキシ樹脂塗装鉄筋のみを掲載)

我が国における防食補強材に関する検討の歴史

年 次	制定された指針等および,その関連事項
1992年	土木学会編: <mark>連続繊維補強材</mark> のコンクリート構造物への 適用(コンクリートライブラリー72)
1995年	土木学会編:コンクリート構造物の耐久性設計指針(案)
1999年	土木学会編:示方書[施工編]耐久性照査型 (防食鉄筋の記述については、「エポキシ樹脂塗装鉄筋、等」)
2002 年	土木学会編:示方書 [施工編] (防食鉄筋の記述については、エポキシ樹脂塗装鉄筋と亜鉛めっき 鉄筋を記述。ただし、亜鉛めっき鉄筋は一般的な使用実績はあまり ないとしている。)

我が国における防食補強材に関する検討の歴史

年 次	制定された指針等および,その関連事項
2003年	土木学会編:エポキシ樹脂塗装鉄筋を用いる鉄筋コンクリートの設計施工指針【改訂版】 (エポキシ樹脂塗装鉄筋を用いた鉄筋コンクリートの塩害照査)
2007年	土木学会編:示方書[設計編]「耐久性に関する照査」 (防食補強材としては、エポキシ樹脂塗装鉄筋のみ記載。その他に、 電気防食、表面被覆など)
2008年	「JIS G 4322:鉄筋コンクリート用ステンレス異形棒 鋼」制定(SUS304-SD. SUS316-SD,およびSUS410- SD)
2008年	土木学会編:ステンレス鉄筋を用いるコンクリート構造 物の設計施工指針(案)

我が国における防食補強材に関する検討の歴史

年	次	制定された指針等および,その関連事項
2010	年	土木学会編:エポキシ樹脂を用いた高機能PC鋼材を使用するプレストレストコンクリート設計施工指針(案) ・内部充てん型エポキシ樹脂被覆PCより線 ・プレグラウトPC鋼材
2012	年	土木学会編:示方書 [施工編] (防食鉄筋の記述については、エポキシ樹脂塗装鉄筋とステンレス 鉄筋を記述。)

エポキシ樹脂被覆鉄筋を1つの事例とする防食補強材実用化の道筋

問題の認識

エポキシ樹脂塗装鉄筋に関連する1980年代の海外の主な規準

1981: ASTM A 775-81

"Standard Specification for Epoxy-Coated Reinforcing Bars"

ASTM D 3963-81

"Standard Specification for Fabrication and Jobsite Handling of Epoxy-Coated Steel Reinforcing Bars"

1986: *JSCE* Recommendation for design and construction of concrete structures using epoxy-coated reinforcing steel bars" (土木学会のエポキシ指針(案) は英訳されていたので海

外でもその内容は高く評価され大いに参考とされた。)

1990: BS 7295

"Fusion Bonded Epoxy Coated Carbon Steel Bars for the Reinforcement of Concrete"

フロリダ「ロングキーブリッジ」の海上橋脚劣化問題

米国フロリダ州キーウエストに建設されていたEP鉄筋使用橋脚 の海水面付近に、施工後10年足らずで著しい劣化が顕在化

フロリダ州交通省の調査 1987:中間報告

1994: 最終報告

[原因]

- 粗悪品質の塗装鉄筋の使用
 - ➡ 塗装前処理不足による密着性低下
- 施工での粗雑な取り扱い
 - 2 %以上の塗膜剥がれと無補修など ・長期の屋外放置(紫外線劣化)
- コンクリートの品質が粗悪

フロリダ州ではEP鉄筋の使用を全面的に禁止、現在も継続 (ただし、他州では使用を継続)

米国連邦道路局の対応

キーウエストでの劣化報告を受け、EP鉄筋に関する調査を実施

• 1992: FHWA Memorandum

各地で使用されているEP鉄筋を調査

- ・ 錆びや汚れの上からエポキシ塗装
- ・ 多数の欠陥の存在

品質管理の徹底の必要性

ASTM Spec.の大幅見直し

- ・ 塗膜厚の増大
- ・損傷部の全面補修
- ・施工上の注意点の加筆

• 1998: FHWA-RD-98-153

高耐久性防食鉄筋の比較検討

(EP鉄筋の他、ステンレス、亜鉛めっき、クラッド鉄筋など)

耐久性としてはSUS316鉄筋、コスト面を考慮するとEP鉄筋

その後のエポキシ樹脂塗装鉄筋の国際基準 に関連する主な規準制定

1999: ISO 14654

"International Standard for Epoxy-Coated Steel for the Reinforcement of Concrete"

ISO 14656

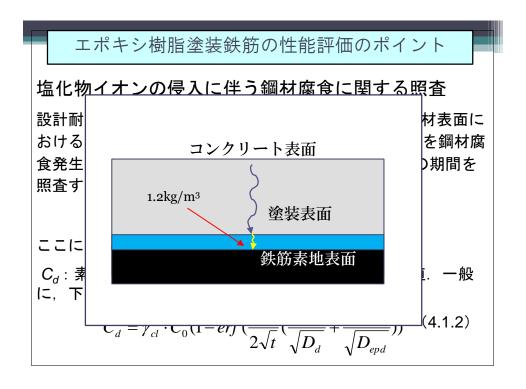
"International Standard for Epoxy Powder and Sealing Material for the Coating of Steel for the reinforcement of Concrete" 土木学会編:エポキシ樹脂塗装鉄筋を用いる鉄筋コンクリートの設計施工指針【改訂版】

旧指針

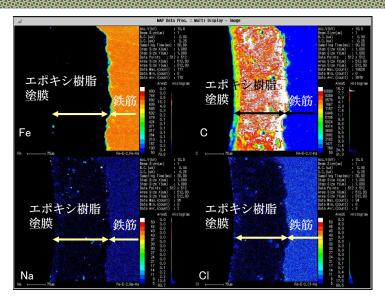
・膜厚:<mark>200±50μm</mark>(150~250μm)

付着強度:無塗装鉄筋の80%以上

耐食性:平均発せい面積率1%以下



新指針


・膜厚:220±40μm(180~260μm)

• 付着強度:無塗装鉄筋の85%以上

・耐食性:平均発せい面積率0.5%以下

EPMAによる分析結果

米国連邦道路局の対応

キーウエストでの劣化報告を受け、EP鉄筋に関する調査を実施

• 1992: FHWA Memorandum

各地で使用されているEP鉄筋を調査

- ・錆びや汚れの上からエポキシ塗装
- ・ 多数の欠陥の存在

品質管理の徹底の必要性

ASTM Spec.の大幅見直し

- ・ 塗膜厚の増大
- 損傷部の全面補修
- PD og 150 ・施工上の注意点の加筆

• 1998: FHWA-RD-98-153

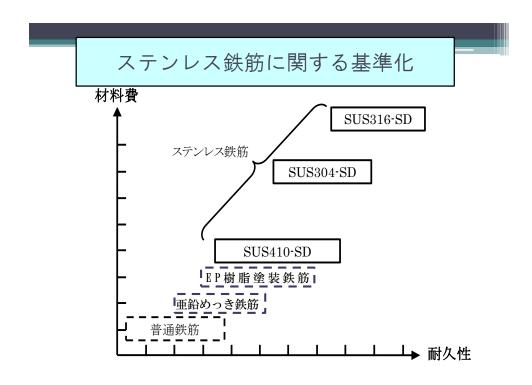
高耐久性防食鉄筋の比較検討

(EP鉄筋の他、ステンレス、亜鉛めっき、クラッド鉄筋など)

耐久性としてはSUS316鉄筋、コスト面を考慮するとEP鉄筋

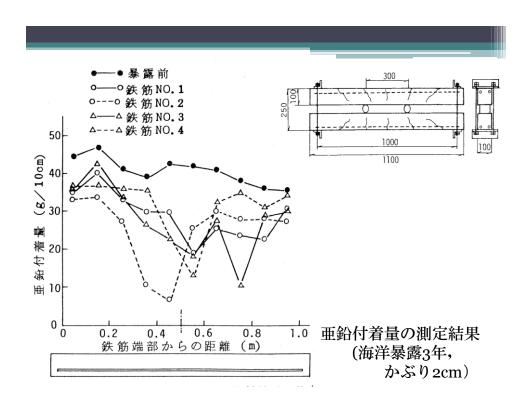
ステンレス鉄筋に関する基準化

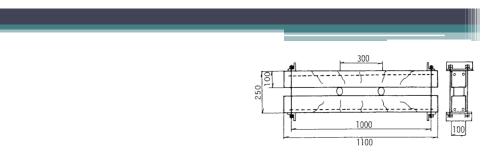
海外:


- BS 6744: 1986(改訂:2001, 2009)
 Stainless steel bars for the reinforcement of and use in concrete.(Requirements and test methods)
- ASTM A955M: 1996 (改訂:2009) Standard Specification for Deformed and Plain Stainless-Steel Bars for Concrete Reinforcement
- ASTM A276:2010 Standard Specification for Stainless Steel Bars and Shapes.

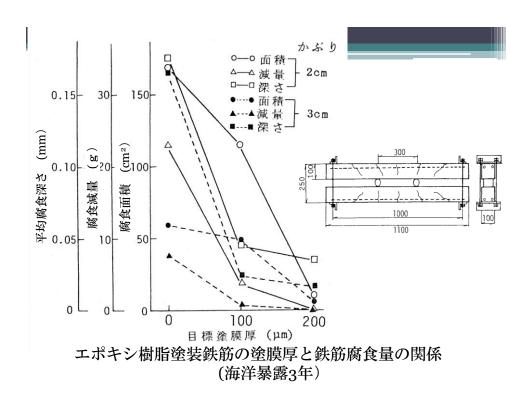
等

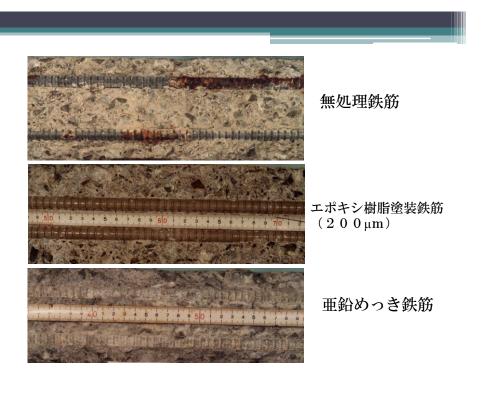
ステンレス鉄筋に関する基準化

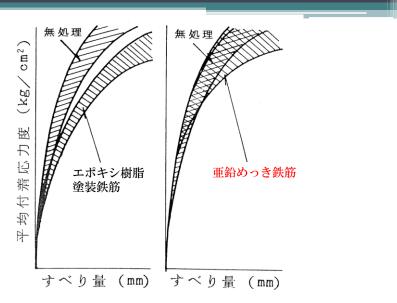

我が国では.


- 2008年3月に「JIS G 4322: 鉄筋コンクリート用ステンレス 異形棒鋼」が制定
 - SUS304 (18%Cr-8%Ni)
 - SUS316 (16%Cr-10%Ni-2%Mo)(いずれもオーステナイ系ステンレス)
 - SUS410 (12%Cr あるいは 12%Cr-Low C) (フェライト系ステンレス)
 - ・2008年8月:土木学会でステンレス鉄筋を用いるコンクリート構造物の設計施工指針(案)が制定

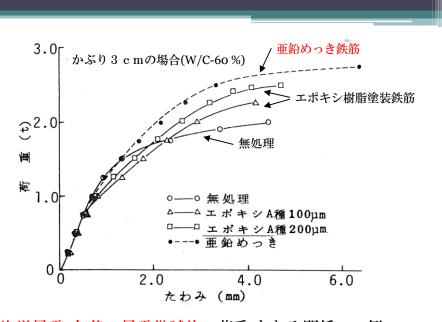
亜鉛めっき鉄筋の今後の道筋

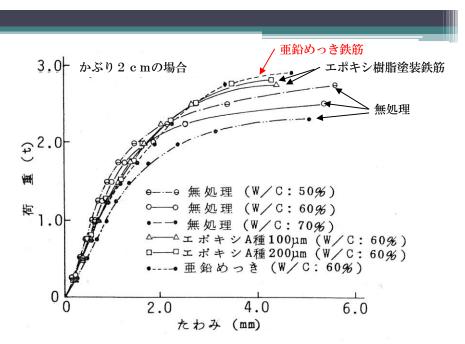

問題の認識

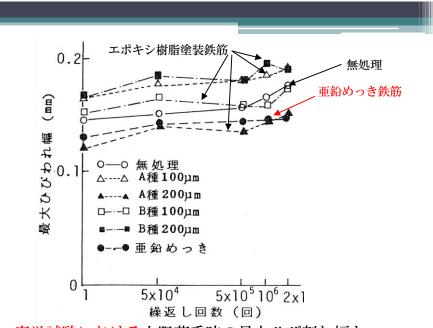


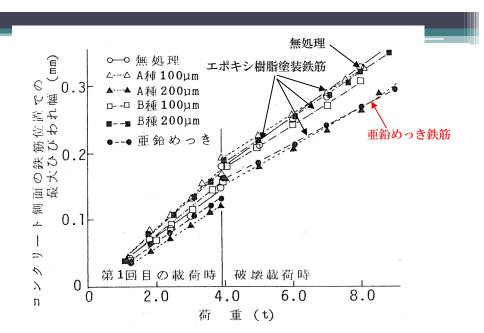


亜鉛めっき鉄筋の腐食量測定結果


かぶり厚	暴露期間	亜鉛腐食	鉄筋腐食	鉄筋腐食	平均腐食
		減量	面積	減量	深さ
(cm)		(g)	(cm²)	(g)	(mm)
2	1年	4.5	1.0	0	_
2	3年	11.3	43.1	1.76	0.05
3	3年	6.3	1.0	0	_

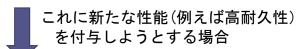



平均付着応力-すべり量曲線におけるばらつき


海洋暴露3年後の暴露供試体の荷重-たわみ関係の一例

海洋暴露3年後の暴露供試体の荷重-たわみ関係の一例

疲労試験における上限荷重時の最大ひび割れ幅と 繰り返し回数の関係(一般養生環境の場合)



疲労試験後の荷重-最大ひび割れ幅の関係

まとめ

コンクリート構造物の特徴

➡ 経済的で長寿命な構造物

材料や工法に求められること

➡ 経済的で長く有効に働くこと

しかし、現状では、必ずしもコストパフォーマンス と性能は両立しない

まとめ

その効果とその継続時間を定量的に捉えること + ライフサイクルコストを最小とすること

亜鉛めっき鉄筋の需要拡大に求められること

性能照査型の設計施工指針の制定は重要な要素

まとめ

その効果とその継続時間を定量的に捉えること + ライフサイクルコストを最小とすること

鉄筋防食材料の選択肢を増やすこと

ご清聴、感謝申し上げます。